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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1241

BASIC DIFFERENTIAL EQUATIONS IN GENERAL THEORY OF

ELASTIC SHELLS*

By V. S. Vheov

1. Coordinates.- The shell shall be considered as a three-
dimensional continuous medium; for the coordinate surface, the mid-
dle surface of the shell shall be assumed parallel to the bounding

. surfaces. Let u and 13 be the curvilinear orthogonal coordi-
nates of this surface, coinciding with the lines of principal cur-
vatures, and y the distance along the normal from the point
(u,B) of the coordinate surface to any point (a,p,7) of the
shell (fig. 1).

The square of the line element in spatial orthogonal curvi-
linear coordinates is given by the formula

~a2 + ~p2
ds2=— — +~

h12 h22 h32
(1.1)

where hl = hl(uj~,~), h2 = h2(ajP,y)j and h3 . h3(u,(3,7) are
the so-called differential parameters of the first kind represent-
ing for the chosen coordinate given functions of a9PjY*

In the triorthogonal system of coordinates chosen as indicated:

1
‘2 = B(l+k2y)

r

(1.2)

h3=l

where A = A(a,B) and B = B(u,B) are the coefficients of the
first quadratic form; and where- kl = kl(u,~) and k2 = k2(a,p)
are the principal curvatures of the coordinate surface on the lines
corresponding to p = constant and a . constant, respectively.

*“Osnovnye DlfferentaialnyeUravnenia Obshche Teoril Uprugikh
Obolochek.” PrikladnaiaWtematika I Mekhanlh. Vol. 8, 1944,
pp. 109-140.
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The magnitudes
by the relations

(2 ‘1

hlj h2, A, B, klj and k2 are connected

+,$(-)

obtained from the equations of Lamb for the differential parameters
hl, h2, and h3 defined by equations (1.2) and from the equa-
tions of Codazzi

From equations (1.2), (1.3), and (1.4) follow

-1 -1 -1
~h2 ahl a2h2

hi_—=_
& ay auay

-1 -1 -1
ahl ah2 a2hl
—— =

‘2 aj3 ay spay
1

(1.4)

the equalities:

(1.5)

2. Fundamental Equations of Three-DimensionalProblem of Theory
of El=ticity. - The six components of the strain tensor of a dense
medium are determined, in the system of coordinates assumed, by
the equations
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a% &h2’1 &h2’1
—~+h2 37 ‘Y

‘PP ‘hz~+hlhz au

auy1 -?. (h2u J ‘h2 ~
‘PY = —h2 &y

1

‘1
+ hl

3

(2.1)

where %= %(u~By7)j up = u~(a,9,7), ad U7 = u7(a,13,y) are
the components of the displacement vector of the poin~ (a,13,7) on
the axes of the orthogonal trihedron, the vertex of which is at the
lwfnt (a,P,7) and the faces of which coincide with the planes
tangent to the surfaces a . constant, 13= constant, and
Y= constant. The positive direction for the displacements cor-
responds to the direction of increase of the coordinates a, B, 7.

Equations (2.lJ =e oDtained from the general formulas of the
theory of elasticity given for example in the book of L. S. Leiben-
son

ory
the

(reference 1) for h3 = 1.

The equations of equilibrium of the general problem of the the-
of elasticity in the coordinates of the shell are presented in
form
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-1
1 ahl (Ju —_

: y=)+$(?)+$(i&)+i-$$=lah2 ~+&h2

‘gay hl by

(2.2)

where 0 and T are the normal and tangential stresses. The sub-
scripts denote, for normal stresses, the direction of the outward
(in the direction of increase of the corresponding coordinates)
normal to the correspondingsurface; for the tangents, they denote
the surface of action of these stresses taken in pairs from the
conditions of their reciprocity. The ccmnponentsof the stress
tensor are considered positive if, when applied to the surface with
positive outer normal, they are directed toward increasing coordi-
nates. The magnitudes pa, P@, and P7 in equations (2.2) are
the components of the vector of intensity of the volume forces.
Equations (2.2) are obtained from the general equations of the the-
ory of elasticity given for example by Love (reference 2) for

‘3 = 1“

In the theory of shells, the stresses Oa, up) T@ = T@)
applied normal to the section and lying in a plane tangent to
v = constant, are determined from the six stress components
expressed in terms of the strains. The remaining three components
of the stresses are found from the conditions of equilibrium.
From Hooke’s law, only the three relations referring to the
stresses 0 -

given inth~’fo”~’ and ‘a~

are retained; these relations are

(2.3)



NACA TM 1241 5

where A is the volumetric dilation and h and v are the coef-
ficients of elasticity of Lam6.

,..
The equations of equilibrium (2.2), on the basis”of eQu&

tions (2.3) and (2.1) after a number of transformations using, where
required, the relations (1.3), (1.4) and (1.5), are given in the
fo~

r. -1

1-2(b2p)(H+K7)ABA + 2p ~
all J

(Bk2%) + & (Aklup) + 2ABKu7 +

(2.4)

where K . K(u,B) and H = H(u,fl) are the Gaussian and mean cur-
vatures of the coordinate surface, respectively.

K = klk2

}

(2.5)
H = ~ (k1+k2)

The volumetric expemsion and the normal component (the pro-
section on the normal to the surface 7 = constant) of the ele-
mentary rotation of the shell are denoted by A = A(cLj@jY) and
2x = ‘M~$13)7)> respectively. In the following discussion 2X
shall be denoted simply the normal rotation. The volumetric expan-
sion and normal rotatIon are determined in terms of the displace-
ments %3 ~s ~d’ ~y in the coordinates of the shell by the

formulas
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(2.6)

Equations (2.4) in orthogonal coordinates for h3 = 1 are the
general equations of equilibrium of an elastic body. The first two
of these equations express the tangential equilibrium of the three-
dtiensional element dud~dy/hlhZ of the shell, that is, the equi-
librium of this element in the plane tangent to the surface
7 = constant. The last equation refers to the equilibrium of this
element in the direction of the outer normal to the surface
Y = constant. Equations (2.4) differ from the equation of the gen-
eral problem of the theory of elasticity in displacements or
strains in the fact that each of them contains both static and
kinematic magnitudes.

3. Displacements and Strains of the Shells. - The theory of
shells is based, as is known, on the hy~thesis of Kirchhoff-Love
according to which a rectilinear element normal to the middle sur-
face of the shell remains, after deformation,rectilinearnomal to
this surface and of the same length. This hypothesis is equivalent
to the assumption

%y = epy = eyy =0 (3.1)

and leads, for the displacements ~, ~, and U7 of an arbi-

trary point (u,D,Y) to the formulas

‘7 =W J

(3.2)

where u = U(U)P) and v = v(u,S) are the tangential displacements
(in the directionof the tangents to the lines P = constant and
m = constant) of the point (u,13) of the coordinate surface, and
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w = w(a,j3) is
normal to this
coordinate 7

-

7

the displacement of the same point in the direction
surface positive in the direction of increasing
(fig. 2j.

For the purpose of presenting a more accurate theory valid
not only for shells of medium thickness but also for thick shellsj
another hypothesis, which is a generalization of that of Kirchhoff-
Lovej will be used.

It shall be considered that each of the three components ~,
upY and U7 is represented ea a function of y by a linear law,
setting

(3.3)

‘Y =W+yw+ J
where u, v, and w have the same values as in equations (3.2);
+= w+(u,~) is a magnitude that depends, like u, v, and w,
only on the two variables UJP and is the relative elongation of
a normal element of the shell (constant under the assumption made
here over the entire length of this element). It is easy to see
that with equations (3.3) equations (3.1), which express the funda-
mental hypothesis of the present theory of shells, do not apply.
With the introduction of the deformation of elongation w+ of a
normal element of the shell, all the six components of the strain
tensor (2.1) receive values different from zero.

Equations (3.2) establish the kinematic mcdel of the deformed
state of the shell. This state, in the general case, is made up of
two states of which the first is determined only on the tangential
displacement U,V of the point of the coordinate surface (w, w+
in this case being equal to zero) and in the second only by the
normal displacement w and the elongation w+ (U,V in this case
being equal to zero). The deformation of the shell determined only
by the tangential displacements U,V shall be denoted the tangen-
tial deformation for briefness. This deformation is characterized
by the fact that an arbitrary point of the surface y = constant
after deformation does not go beyond t-helimits of this.surfacesa
a two-dimensional space. An elementary layer of the shell dy for

.—. ——..- - .-.—. ——-—. . —— . .—
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a tangential deformation does not change its shape and position in
space and undergoes deformations of length and shear at the sur-
face y = constant as a two-dimensional space (in the general case
for K+ O non-Euclidean). A defomnation of the second kind
determined only by the normal displacements w and the elongation
# will be called a normal deformation of the shell. For this
deformation, an arbitrary point (u,13,Y) of the surface y . con-
stant passes with respect to this surface Into the third dimen-
sion. A normal deformation is accompanied by a change in shape
of the surface.

In setting up the kinematic model determined by equations (3.3)
for all six components of the deformation tensor, by virtue of
equations (2.1) and (1.2), a definite law of variation with thick-
ness of the shell is obtained.

Representation of em, epp, and eap in the fomn of series
in the variable y gives

(3.4)

(n = 1,2,3, . . .) )

where the coefficients of the series cl) ~z~ ‘~ Xln~ X2nj
and !n each depends only on the displacements u, v, and w+
of the point (u)p) of the coordinate surface. By substituting
the displacements ~, UP, and U7 determined by equations (3.3)
on the right-hand sides of the corresponding equations (2.1) and
then by representing the magnitudes hl, h2, and their ratios
(direct and inverse) in the formof series
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●

hl = L (1 - kly + k12y2 -k13y3 +...)
A 1

h2 = ; (1 - k2y + k22y2 -k23j3 +...)

‘1 B
[

1

1
(3.5)

~=x 1- (kl-k2) (y-kly2+k1273 - . . . )

‘2 A
q=% [ 11+(kl- k2)(y - k2y2 + k22y3 - . . . )

and referring to the last two of relations (1.3) and relations (1.4),
titer a number of transformations
ies (3.4) the following equations

1 aucp.__+L
Aau AB

for the coefficients of the ser-
are obtained:

‘ln= (-1)“-1’lkl-k2)E2n-l:$(f)-kln-1:2(:D-
kln-1 n-1

+ k2

A13 (a2w laB& 1 aA &—-- —— -- ——
hap ~hap Ba$& I

●

(3.6)
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The remaining strains ea., e~y, and eyy depend only on #.

After expanding them in a series in powers of 7,

ea7= (y-kly2+k1273 - . . . )~,~

)

e67=(y- k272+k22y3-. ..)~~

I

(3.7)

‘7Y =w+

In the following discussion, formulas for the volume expansion A
and the elementary rotation 2X will be required. When these mag-
nitudes are also represented in the form of series in powers of 7

A=AO+
z

An7n

2
x = x~ + xn7n

1

(3.8)

Then by making use of equations (2.6) and (3.5) after a number of
transformations,using relations (1.3) a.ld(1.4) for the coefficients
of the series (3.8),the following formulas are obtained:
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‘o .Cl+

An = Xln + Xzn

C2+W+=L
[
& (Bu) + +

1
(Av) + (kl+k2) W + w+

AB&

[ )
= (-1)”-1 kl”-l : + k2n-1 $& f +

( -+k2n-1*):-kln-lr~ :(~”*)+:%*l -

“-l akl
kl

ap\

k2n-1

d

kln-1 - k2n-1

(

2“

2AB )}s-,$:;: :::
——- -——

4. Analysis of Kinematic Relations. Corrections and Additions
to Theory of Love. - Equations (3.4) and (3.6) for the components
of the deformations have a common character and were obtained in
correspondencewith the hypothesis (3.3) assumed for the displace-
ments. For w+ . 0 from equations (3.3, 3.4, and 3.6), there are
obtained equations for the displacements and the deformations of
the shell having an inextensiblenormal element and following the
hypothesis of Love (3.2). The magnitudes XII, X21, and Tl,

defined by equations (3.6) for n = 1 and w+ = O and the first
two representing bending deformation (variationof the principal
curvatures kl and k2) and the third the torsional deformation,
differ from the correspondingmagnitudes Xl, X2, and T , which
were used by Love. By setting w+ = O in the last three equa-
tions of (3.6),

+

(3.9)
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From these equations, it follows that for tangential deforma-
tions (in the case w = O) the changes in curvature X11) @ X21
are determined as linear algebraic expressions relative to the dis-
placements u and v with coefficients proportional to the partial
derivatives of the principal curvatures kl) and k2 of the unde-
formed surface. The expression for the torsional deformation will,
as is to be expected, be symmetricalwith respect to the coordinates.
The seineproperties, es seen from equations (3.6), are possessed
also by the remaining components Xkj X2n) and Tn for
n=2, 3, 4, . . . . In particular, for the spherical shell a
result is obtained that generalizes in a certain se~e the theory of
the bending deformation of a plate as based on the hypothesis of
Kirchhoff. This result can be formulated in the following theorems:

Theorem I“.- The defo?.vnationsof elongation and shear em,

e!3pJ and Q’@ and the volume defomuation A of a spherical shell
in the case of tangential deformations (that is, for w = O) are
uniformly distributed over the thickness of the shell (do not depend
on y) and are determined only by the deformations of elongation
and shear cl, ~2> and W of the middle surface. An exception
to the uniform distribution of the magnitudes eti, epp> and ea~
over”the thickness of the shell arises only as a result of nomual
displacements. A change in the shape of the spherical shell char-
acterized by the parameters of the change in curvature X11> X21)
and 71 is due only to the normal displacement w.

Theorem II. - The normal rotation 2X of the spherical shell
is determined only by the tangential defo?nnation(the variables u
and v) and remains constant over the thickness of the shell. In
the case of normal deformation, the normal rotation 2X is equal
to zero.

This result, obtained on the basis of the analysis of the gen-
eral formulas of the preceding section for the spherical shell, may
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be arrived at
the spherical
surfaces (for

directly
shell as
exemple,

in the following manner. It is assumed that
a iiefomuedbody is, at one of its bounding
the inner), in contact with a rigid spheri-

cal base so that an arbitrery point of the shell can be freely dis-
placed along the surface of this base without going outside the
limits of this surface. Such a mcdel corresponds to the case of
tangential”deformation of the shell. Now at the point (ujB)
some normal section of the shell, in general arbitrary with respect
to the chosen coordinate lines u and 13, iS assumed. The lin.
ear normal element, as the shell passes into the deformed state,
remains, by the Love hypothesis,noxmal to the baae surface and
takes on a new position detemnined by the rotation of this element
with respect to the center of curvature (in the case of a sphere,
comnon for all normal elements). Let M1’M2’ be the projection
on the plane of the chosen section of the element” M1M2 after
deformation (fig. 3). Further let 6= MIMl’ denote the projection
on the plane of this section of the vector of the total displace-
ment of the lower point Ml of the element. Then the displace-
ment k7 = MM’ of an arbitrary point M of the element M1M2 in

the plane of the chosen section will be equal to

(4.2)

where k = l/R is the curvature of the inner surface of the shell
and “y is the distence of this surface to the point M considered.
The corresponding elongation of the temgential element
(is= (l+k7) Rd9 is determined by the equation

(4.3)

From equations (4.2) and (4.3), it follows that wherees the
tangential displacement t of the spherical shell is a liuear
function of the coordinate 7, the deformation of elongation e
does not depend on y. The same result can also be obtained
directly frau equations (2.1) for the deformations em, ep$>
and ‘a@ for the values entering the following formulas:

kl = k2=k= constant
1

Ahl=Bh2=~

~ = (l+ky)u

U~ = (l+ky)v” 1

(4.4)
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In the same way on the basis of the second of equations (2.6),
the second theorem can be proven.

In constructing this theorem, Love represents the components
of the deformation eu, e~p> and e~P in the form of linear
expressions relative to the parameter y.

and for the parameters
gives the equations

‘U.a = c1 + X17

epp =<2 +X27

1

(4.5)

‘%@ =k)+T7

of the change in curvature Xl, X2, ad T

These equations differ essentially from equations (4.1). The
magnitudes Xl, X2, and T determined by Love es coefficients of
the second members of equations (4.3) are in contradiction to the
theorems just proven for the spherical shell. The difference noted
here in the determination of the magnitudes xl) X’2J and T by
equations (4.1) and (4.6) is explained by the fact that Love and
other authors (in particular, Timoshenko (reference3)), following
Rayleigh, start from the assumption of the inextensibilityof the
middle surface. This assumption stands in certain contradiction
with the geometry of extensible and flexible surfaces.

In recent years a number of papers have appeared that refine
to a greater or less extent the theory of thin shells of Love.
The most interesting and original of these are the investigations
of Krauss (reference 4), N. A. Kilchevsky (reference 5), and
A. I. Lurie (reference 6).

5. Fundmnental Differential Equations of Equilibrium of Elastic
She11s. - The general equations of a shell possessing deformable
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normal elements is obtained by reducing the three-dimensional prob-
lem of the theory of elasticity to two-dimensionalstarting from
equations .(2.4),retaining in the series (3.8) the first three
terms, and applying the principle of Lagrange corresponding to the
kinematic hypothesis (3.3).

An element of the shell AB5dadP, having an infinitely small
area AEilud13on the middle surface and a finite length 5 equal
to the thickness of the shell, possesses according to the kinematic
model seven degrees of freedom; nemely, siX degrees with respect to
the displacements of the element (three linear and three angular)
in space as a rigid body, and one degree characterized by the
change in length of the element. Corresponding to these degrees
of freedom seven equations of equilibrium must be obtained. Of
khese equations, the first six refer to the equilibrium of the
element in space es a rigid body and the seventh may be obtained
by equating to zero the work of all the external and internal
forces of the element AB&k@ against displacements and deforma-
tions correspondingto the unit elongation # = 1. It shouldbe
noted that the equations of equilibrium of an element may also be
obtained on the basis of the principle of virtual displacements by
equating to zero the sum of the work of all the forces (in the
given case only the external, because the element is considered as
a rigid body) for each of the six possible unit displacements.

By the method assumed here, one of the conditions of equilib-
rium of the element as a rigid body, nemely the condition corres-
ponding to the rotation of the element about the normal to the mid-
dle surface and given in the theory of Love, the sixth nondiffer-
ential (relative to the sheering forces and torsional moments) is
satisfied identicallybecause of the relation Tap = Tpa used in
deriving the”general equations (2.4).

Thus, starting from equations (2.4) and.applying the principle
of virtual displacements, it will be necessary to obtain for an
element of the shell only six equations, one of which (called above
the seventh) according to its physical meaning represents the gen-
eralized condition of equilibrium of the element AB5dailp having
a strain # expressed as a function of y.

Substituting in the left sides of equations (2.4) the dis-
placements ~, ~, ad U7 accotiing to equatfons (3.3), the

volume dilation and the normal increment A and X according to
equations (3.8) (in which It is necessary to retain only the first
three terms, that is, to y2 inclusive and reject the others) and
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h~ and h2 accofiing to equations (1.2), three expressions are
obtained each of which contains terms with powers of y up to the
thiti inclusive.

The three magnitudes thus obtained represent, according to
their physical meaning, the components along the axes of the mova-
ble trihedron on the surface y = constant of the vector of the
external force acting on the three-dimensionalelement of the

‘dP dy and expressed in terms ofshell _
hlhz

~) w) w+, Ao, Al, A2, Xo, Xl, and
tudes ~p) ~yp> Uy) PaY Pp) and py.
dimensional element of the shell ABW@3,

the kinematic magnitudes u,

X2 and static magni-
In passing to the two-
the work of all the

forces acting on this element and determined in this manner must
be equal to zero on each of the five possible displacements as a
rigid body.

Corresponding to these displacements and by virtue of hypothe-
sis (3.3), each of the first two equations of (2.4) must be by
dy and ydy and the third by dy, integratedwith respect to 7

between the limits y . - +8 to y=+$6, and the result

equated in each case to zero. Thus five equations are obtained
containing in addition to terms with the kinematic magnitudes u,
v, w, +, A()) AI, A2, XO, Xl, and X2 also terms with the
transverse forces N1 and I?2 arising from the tangential
stresses ‘m ‘d ‘7P” . \

(5.1)

equation corresponding to the lin-In order to obtain the sixth
ear strain of w+ of the normal el~ment of the shell, the left
side of the third equation in (2.4) must be multiplied by ydy
and the integral of this expression between the limits-1 -1
y= -$8 to y=++ 5 equated to zero. When it is remembered
that

.



NACA TM 1241 17

where the first term refers to the work of the external and the
second to the work of the internal normal forces of’the element AB5
for the normal displacements ‘7

= ~ for # = 1, determining

~~) -fyp> and 07 In terms of the defonuations by the equations

(5.3)

and representing the remaining terms of the third equation of (2.4)
in the form of a finite series in puwers of 7, an equation is
obtained in which the unknown will be only one of the kinematic
magnitudes.

Thus there are six equations with respect to 12 functions,
the fom basic functions u, v, w, and *, the six func-
tions AO, A19 A’2) Xo) xl> and X2 giving the coefficients

of the first three terms of the series (3.8) and the two transverse
forces N1 and N2.

These equations, upon eliminating the forces N1 and
reduce to four equations. Neglecting the small terms with 3;62,12,

k2252/12, and k1k2b2/12 in the expressions 1 + k21b2/12,

1 + k2282/12, and 1 + k1k252/12 finally

.
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-

-.Ao - (A+J)H
82 62 52

~A2+w—~
{[(

1 aw~Al -A
)

~ Bk2 klu --—+
6ABbu A&,

I

where X = X(U,13), Y = Y(cL,13), and Z = Z(a,13) are the components
on the axes of the movable trihedron of the vector of surface
intensity of the load computed for the stresses ‘ay~ ‘BY ‘ and Uy

on the boundary surfaces y = ;8, 7= - ~ b and for given volume

forces Pa, Pp, and py by the formulae
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,x=

Y=

z=

1

{E
\

h1h2
;6.-

2’.L
hlh2

The magnitudes ~ .
moments of all the forces
axes aYB of the movable

p+

dy +

d.y+

dy +

+

‘PY
hlh2

i-

_z
hlh2

(&rface and volume)’relative to the
trihedron of

1

=%=&

(5.5)

the middle surface:

G

J
+$6

Pa
— ydy +
hlh2

:8--

1

$ (5.6)

Finally the magnitude Z* = Z*(a,P) is the new generalized
static magnitude correspondingto the elongation of the normal ele-
ment and determined by the equation
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In the case where only surface forces act on theshell, the
first components in equations (5.5) to (5.7) drop out.

To the equilibrium equations (5.4) must be added the equations
for the components ~o) Al) and A2 of the volume dilation and

X(), ~~) - X2 of the normal rotation. Accofiing to equa-

tions (3.9),

(5.8)

equations (5.4) and (5.8),

K = k1k2

H = ~ (k1+k2)

L = ~ (kl-k2) 1

(5.9)

>

Equations (5.4) together with equations (5.8) form a complete
system of differential equations of the shell. To these equations
the boundary conditions for each particular c-e must be added.
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For this purpose, the internal generalized forces must be
determined. These forces, corresmnding to the degrees of freedom
of’the normal.deformableelement, will in any normal sections of
the shell co~”ist ‘ofthe tangential (normal and shearing) forces T
and S acting in the plane tangent to y . 0 and corresponding
to the displacements of the element parallel to this plane, the
trehsverse force N directed along the normal to y . 0 and cor-
responding to the displacement of the element along the normal to
the middle surface 7 = O, the bending and torsional moments G
and H corresponding to the angular displacements of the element
with respect to the tangent axes of the movable trihedron and,
finally, the new generalized (staticallyequivalent to zero) trans-
verse force N* correspondingto the elongation of the normal
element.

All of these forces, with the exception of the transveme
force N, can be expressed in terms of the fundamental kinematic
magnitudes u, v, w, and # by setting up the work of all
(tangentialand normal) stresses of the normal section consider~
over unit displacements of the normal element, translational in
the tangent plane, translational in the direction of the normal
to the middle surface, an~lar relative to the axes in the tangent
plane, and in the displacement of the points of the element UY . #7
for w+ = 1.

For the internal forces on the two besic normal sections
a. constant and p . constant (fig. 4), the following equations
are obtained:

, , -, ..,,,.. - ,-, .-,, ,, ,,-. ,- !.!. ..!! . . . . . . . . . . . . I .
,,
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+

&y =
[

pb+2p)6C2 + $ (kl-k2 )%2]+

\ (5. 10
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In these equatfons,

.C1

to

23

lau+l aA=-— ——v+klw
Aau AB ap

()lalb_k12w__— .— 1 bAbw-— ——+klw+
.Ab Ah ~2 ap ap

(5.11)—

Depending on the character of the problem, the boundary con-
ditions may be purely kinematic, purely static, or of the mixed type.

In the case of kinematic conditions for the normal element of
the shell and the boundary surface, there must be given in the boun-
dary surface three displacements of the midpoint of the element
along three mutually perpendiculardirections, the angle of rotation
of the element relative to the tangent to the contour curve of the
middle surface and finally the normal displacement of any other
point of the element. Altogether there will be five independent
kinematic conditions, which together with the fundamental equa-
tions (5.2) and (5.8) make the problem entirely determinate.

If the boumhry conditions are given in terms of stresses,
there will be in this case five independent conditions, the four
usual conditions of the

. generalized (statically
moment theory and one with re@rd to the
equivalent to ‘zero)transverse force IW.
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6. Shells of Msdium !I!hickness.- By neglecting in equa-
tions (5.4) and (5.8) the small terms with tangential displace-
ments u and v, which contain as factors the products of the cur-
vatures kl and k2, and their derivatives for the shell of medium
thickness

A==1-$

E
v=

2(l+q )

(6.1)

and neglecting, in correspondencewith this the last equation of (5.4)

(

1 bAO & ~ % 5’2aA2

) (

ax. axl

)1

52 a%
——

~z ‘6 ~+12~a
-(1-v)~ ~+$kl~+~~+

[(
aAo ~Al

1}

ax.
a ~kl —

)
aw

%B aP+~-
—-

‘l-V) ‘y + ‘l--” ‘2 au

62

[
~ (KAl+HA2) - 2HA0 + (l-v) -& 2ABKW +

1
~ (Bk2u) + $ (Ak~V) +

-[ [
1-U2 ~ 1

1]
~ (B@ -$ (%) =0

E5 -E&

(6.2)
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where nuu

[ 1AB 2“u)+&‘A’)+2HWAo=~ 7

1=-LEH:)+%J31
(a’w laAbw laBbw

)
~=’G_m_—___-—

Aa$& B&tap

For the internal tangential forces and the moments,

%=- ’53 [ 1Xl+k2cl +u(X2+k3c2)
12(1+?)

G2=-
E53

[ 1
X2 +k162 +v(X1+klcl)

12(1-$)
E53

‘1 = m ‘T1+k2w)

‘2=- &
(Tl+klw)

> (6.4)

——
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where the strains % ~2> q ‘It X2, Tl, and 12 are deter-
mined by equations (5.11), in w~ich (fourth and fifth) W must
be set equal to zero.

Equations (6.2) to (6.4) refer to shells of medium thickness
and were obtained with an accuracy up to terns with 53/12 in
strict correspondencewith the fundamental assumption (3.2) because,
in the fimt place, the given equations (4.1) for the components
of the changes in curvature xl) X2, and 71, in contrast to
equations (4.6) of Love are accurate; and in the second place,these
eQuations contain additional terms.erising from the moments, namely,
tie te~ with A283/12, and X2b3/12, ~hich

present moment theory constructed on the basis

epp} and eap in the form of equations (4.5)

‘au = cl +X117 +X1272

‘lW
= ~2 + X217 + X2272

‘a$ = w+ Tly + 7272

are absent in the -
of the magnitudes em,
and not in the form

(6.5)

which lie at the basis of the theory given here. This theory and
the more general one given in the preceding section and referring
to thicker shells is in full agreement with the fundamental theorems
of the theory of elasticity, in particular, with the theorem of
reciprocal work, which, aa shown later for the exsmple of a cylin-
drical shell, does not correspond to the theory of Love.

7. General Technical Theory of Thin Shells. Two methods of
Solution of the Froblem. Generalization of the M-en and Sophie
Germain-LagrangeEquations. - For thin shells, further simplifi-
cation of equations (6.2) to (6.4) is possible. Eliminating from
equations (6.2) the functions Aoy Al) A2J X()~ Xl> and X2
with the aid of relations(6.3), three equations are obtained in
the three functions u, v, and w. The first two of these equa-
tions, when multiplied by 5, will each consist of terms propor-
tional to the thickness 8 and terms proportional to magnitudes

consisting of the product of 53/12 by the curvatures. kl and k2

or the -derivativesof these curvatures.

In the third equation, in addition to the terms of this type,
there will enter a term proportional to 53/12 and independent of
the curvature of the shell.
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The rather extensive theoretical and experimentalinvestigat-
ions made by the author show that for thin shells the relative

thickness ~km = Omin < 1/30; the terms with ~ k
1: 1’ Sk” ‘

83 akl 63 ak3 63 akl 53 ~k2
.—— —— — ,ana ——
12 & ‘ 12 & ‘ 12 ap

entering in the funda-
12 bp

mental equations are factors of second-order values for the dis-
placements u and v. Without sensible error these terms, as
shown in the work on cylindrical shells (reference 7) and thin-
walled rods (reference-8),can be neglected.

= = (Cl+uq)‘1 ~~

T21v= + (C2+VC1)

G1=-
~53

(x~+ux~)
12(1-V2)

%2 = - ’53 (X’+vxl)
12(1-V2)

E5
‘1 = - ‘2 = ‘(1+~) w

HI = E53 ~
- ‘2 = 12(1+V)

where becauee of the assumptionsmade,

Correspondingly,

> (7.1)
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1 au 1 3A
q= --+ ——v+klw

A& AB a$

1 bB 1 i%C2=— —U+ -—+k2w
AB& B ~13

7 (1 L+2WlaB& laAbw=-—
)

—-- ——- -——
AB auap AbuaB Ba13ba

Neglecting in equations (6.2) all term with .52/12 except

for the term with
$~[~(~~ ‘$(~~] inthel=t

equation, giving according to equatione (5.8) a value independent
of the curvature of the shell introducing the new funo-
tiou CP=CP(U,P) ~d y=v(u,~)

\

(7.3)

After certain traneformationeand simplification of equa-
tione (6.2),
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I-U2 I aV~2Ve2q)+ 2Ve2(HW) - (1-@ (B?e2-Lvh2)w= - — —
[

)

$ (AY)
E5AB &#m)+———

AB[H@R-@2)l--21it7e2q+ {1-u)(HVe2-Lvh2)q+ (1-v) ~

62 v 2V 2W
[

-22H2-
Eee

(1-v)K] W = - + Z

(7.4) )

where 9, v, and w are the required functione of the displace-
ments and are invariant (relative to the directions of the cootii-
nate curves u and B at a given point of the surface) magnitudes;
Ve2 ti vh2 are the differential operatore of the second order
of the elliptic and hyperbolic type: \

The mixed operator HVe2 - LVh2 is defined by the equation
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AB[HW+WJ]-)k1+k2 1
EVe2 - LVh2 = — —

2

J
(7.6)

Differential equations (7.4) form a complete system of equa-
tions in the three fundamental displacement functions 9, w,
and w.

These functions according to equations (7.3) determine the
vector of total displacement of the point (ajB) of the ~ddle
surface afi therefore by virtue of equations (7.2) and (7.1) all
the deformations and the internal axial forces and moments of the
shell.

Equations (7.4) are thus the fundamental equations of the the-
ory gi~en here for thin shells end permit solution of the problem
of the equilibrium of elastic shells of small curvature by the
methcd of displacements.

The theorg of thin shells can also be presented in another
more compact form, namely, in the form earlier proposed of the
mixed method by intrmiucing only two functions, the stress func-
tion @ and the displacement function w. Setting (for X = Y = o)

(1 a% 1 bB b4 1 bA&3
%=-’5’2=-~~-—— —--——Ahbp Bb13bct)J
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and bear@g in mind the analogous equations (7.2) for X1, ~,
and ~ and equations (7.1) for ~, ~, and El = - H2, the
,geneTal equations of equilibrium and deformations of the momsnt
theory of shells are represented in the form of two symmetrically
constructeddtiferential equations:

~+ve%e?a - (Hve2-Lvh2)W = O

) (7.8)
- (HVe2-LVh2)0 - ’53 Ve2Ve2W + z = 0

12(1-V2)

These equations are a generalization
well for the two-dimensionalstress state
tion of Sophie Germain - Lagrange for the
plate, inasmuch se for kl = k2 = O (the
they break down into the well-known equations from the theory of
elsaticlty

of the equation of Max-
of a plate end.the equa-
case of the bending of a
case of a flat plate)

v%2#=oee

Ve%ezw= 12(1-IF) ~

E83 )

(7.9)

in arbitrary (for Ve2
coordinates.

determined by equations (7.5)) orthogonal

13?In the second of equations (7.8) the term with 53/12 is
neglected, the fundamental equation of the momentless theory of
shells results:

(Hve2-Lvh2)~ = Z (7.10)

After determining the functions @ and w, the forces T1
and T2 are found frcm equations (7.7), the moments ~, ~,
and H frcanequations (7.2) and (7.1).

These foroes and moments will satisfy the equations of equil-
ibrium

,,, , ., ,. . . .-—.-.. ..
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“1
o

0

(75

for X.Y= O with an accuracy up to the temus ABklNI and
ABk2N2 in the first two equations and the term klH1 + k2H2 in

——

the last equation, which as magnitudes proportional to k183/12

and k253/12 (by virtue of the fourth and fifth equations of (7.11)
and the relations (7.1) and (7.2) for the moments) are taken equal
to-zero.

In neglecting in the first two equations the terms with klNl

and k2N2, an error is admitted of the same order es that in the

generai theory in replacing the lest of equations (7.11) by the
approx~te relation S~ = - S2.

For the transverse forces N1

E53
N1=-—

12(1-U2)

~3
‘2=-

12(1-V2)

which constitute a generalizationof the
the theory of the bending of a plate.

(7.12)

N2,

Ve%

vezw

1

well-known equations of
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8. Circular Cylldrical Shell. Particular Caees. - For the
coo~inatea of a and P, the dietance to the point considered

.. along the_gnerator d the tranevez%e arc, respectively, of the
middle eurfaoe are Iiakeni

Then, evidently A = B = 1. Equatione (5.8) for kl = O and
k2 = l/R = conetant aesume the form

‘O=z+a$+kz”++

Als- (&+& )+k22v
h2 aj32

A2 = kl

Equations (5.4) may be presented with
taining the dtfferential operatore.

+ k2@

} (8.1)

the aid of table 1, con-

.



TABLE 1

62 a3

v=% (A+31J) k2
azaf32

82k22+ ~
(
k24+2k22

, A; a 82
‘z ~2 -5k2

[

_+ (A+2P)(?$+ IS:)]2A a2
auz

a
‘z

A$

ti2 a2Jr2-~
[

k22Az+

‘+’”)($+k~)l

(8.2)
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In this table X, Y, Z, and Z* denote free terms depend-
ing on the internal forcee (~ and n$ are taken equal to zero).
The,d~fferential operators referring to the corresponding func-
tions are Indicatal. These o@n%tors form a symmetricaldifferen-
tial matrix. The elements of the matrix symmetricalwith respect
to the diagonal terms have the same expressions, a consequence of
the theorem of reciprocal work.

For k2 = O, equations (8.2) break down into the following
equations (likewise symmetrically constructed):

(8.4)

Equations (8.3) are, in a certain sense, a generalization of
the problem of the two-dtiensfonalstress state of a plate and per-
mit determining the stresses and the deformations of the plate
under the action of two mutually balancing concentrated forces

applied on the planes y =

to the middle surface. In
the first two equations of

—

~5andy=
‘2 - ~ 5 and acting normal

the case of the homogeneous problem,
(8.3) may be satisfled by setting

a 2@U=-A—V
au

2 v%

1

(8.5)

‘=-haf3

d = (A+2~) V%20

where @ =@(a,~) is an arbitrary function. The ltit equation then
becomes



36 WACA TM 1241

46+1 v2#@=”oV2V2V20 - —
A+2p

(8.6)

% .4@w)/(~+2p) is biharmonic.and therefore the function V

The magnitudes u, v, and w+ determine the strains em)
e$pY %$J ‘d ’77 and therefore the stresses Oa, up) and

‘a~ ●
The remaining stresses, as in the general case of the shell,

must be found fra the condition of equilibrium.

In the same manner as the particular case of equations (8.2),
there can be obtained the fundamental equations for the circular
arch with account taken of the extensional defamations of the arch
in the direction of the normal to its axis. In this case,the dis-
placement v must be considered equal to zero and the remaining
magnitudes u, w, and w+ considered only as functions of P.
Equations, which generalize the well-known equations of Boussinesq,
are obtained.

E
P =—

2(1+V) )

(where V is the Poisson coefficient), equations for the circular
cylindrical shell shall be obtained in the three functions u, v,
and W. The last of equations (6.2) drops out and the remaining
ones, in passing to the relative coordinates so that A = B = R,
msy be represented with the afd of table 2.



w
—

l+U a2.—
2 aaixl

~2

(
V2V2 + 2 a2

)
—+1+1
af32.

where

2 a2 a2
v =2+2

22’
-~RZ

(8.7)

(8.8)

CA
-1
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The system of the three equations (8.7) may be reduced to an
equivalent single equation of the eighth order. Following Galerkin
(references7 and 8), the firet two equations (8.7) may be substi-
tuted for X = Y = O by introducing a new function @ = @(a,j3)
and expressing in terms of this function the displacements u, v,
and w by the equations

.

The last of equations (8.7) assumes the form

( a4 )C2(V2V2+ 2V2 + 1)V2V% - 2C2(1-V) ~ - —

}

v2# +
&4 h2ap2

(1N)ip2LJz=o

(8.10)

Equation (8.10) is the fundamental equation of the circular
shell. In this equation

v2v2-a4 +2 a4 +a4— — (8.11)
&4 th2ap2 af34

For comparison, there are presented the equations obtained on
the basis of the existing moment theory of Love. These equations,
given for example in the book of Timoshenko, may aleo be repre-
sented with the aid of table 3.

.



U(u,$)

TABLE 3

I+v a2 a2 + M a2—— ——
2 aaap g 2 &2

a a

‘z T-
C2

‘a3 a3

1
+ (2-u)—

.2 au2ap

‘(uJ~)

a

‘%

‘N
#-

(8.12)



I Ill Ilm I Illllmllm I Illmmw ■IMmlIIl I II -11111 In-m-mm III-III IImmmnlm lmmwm ~ I IImll Ilnnlln I I 1111 ■ mmum,n

40 ‘

In comparing
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the equations of table 3 with equations (8.7)
(given in table 2), it is noted that in equations (8.12) there are
absent, in the first @ace, certain tem arisiw from the ~ment>
namely, the terms with ~2 = 52/(12R2); in the second place, the
differential operators (of the second of the third equation and
third of the second.)are asymmetric. The absence of symmetn in
equations (8.12) is in contradictionto the fundamental theorems
of the energostatic elastic bcdy. For this reason, the existing
theory of shells starts from a number of classical problems of the
mechanics of elastic bodies.

The previously mentioned defects of equations (8.12) may lead
to a fundamental error in the problem of the vibration of shells.
Given any three Independentform of vibration with the correspond-
ing displacements =, ~, and ii and applying the method of Gal-
erkin to equations (8.12), there is obtained for the frequency of
the vibrations a cubical equation,which being represented in the
form of a determinant of the third order (correspondingto the
mechanical significance of the problem) has an asymmetric struc-
ture. Due to this asymmetry, two of the vibration frequencies for
arbitrarily chosen forms of ii, 7, and ii may receive imaginary
values, a result that is likewise in contradictionto the theory
of small vibrations of elastic bcxiies.

The absence of symmetry in the equations of the moment theory
of cylindrical shells was noted in previously published papers on
the theory of shells and thin rods (reference 10). In these
papem are given equations of the strength, the stability, and the
vibrations of shells of ccmpsite systems and rods possessing col-
lateral auxiliary differential operators of the required functions
of symmetric structure. The recent works on shells (reference 7),
which tiprove to a greater or less de~ee the mment theory, suf-
fer from the defects pointed out here.

9. S@heri.calShell. Generalization of Equation of Sophie-
Germain - Lagrange. - In this case,

k1=k2= k = l/R = constant

H=k

L=O
}

(9.1)
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~equatlons (5.8),

Ao=~+2ku+

Al = - V2W - 2k%

A2 = - Ml

x~.xz=o

w+

+ 2ku+

1

(9.2)

The system (5.4) leads to an equivalent system of the form

AO - (3A+2p)

V2%

where f3 is the
deformation and

+k2x .-&&
[
~ (BY)

2p6 AB au 1
-$ (Ax) J

(9.3)

volume dilation of the shell for the tangential
2X is the normal rotation:

[ 1JIB * ‘B”)+&‘A’)e.~

x
[ 1‘&:(B’)-$(A”)

}

(9.4)

The symbol V2 is the differential operator of the second order
(operator of Beltrami for the sphere):
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(9.5)

In deriving equations (9.3), 1 + &%2/12 -1 is assumed
because of the smallness of the term k%2/12 es canpared with
one.

The first three equations of (9.3) form a complete system hav-
ing a symmetric structure with respect to the functions tl, v%,
and V2w+. The fourth equation, independently of the first three,
determines the normal elongation.

In the case of a closed spherical
normal rotation on the inner and outer
pendent of u,~) intensities of these
term drop out, x=Y.O ad then

e =X=o

shell under the action of
surfaces for oonstant (inde-
pressures, the differential

z4(h)k2w + 2?bk@ = g

2A.ku+ (A+2~)w+= :

where by virtue of equations (5.5) and (5.7)

+A5

z= I(l+ky)z(S7
--

1

Z* .

(9.6)

(9.7)

If w+ is set equal to zero and corresponding the thifi of
equations (9.3) is neglected, then for A= EV/(1-V2), p = E/2(l+v)
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(9.8)

For k = O, the first two of these equations break down into
the equation of Lsm6

v% =
[

LU2 1 a

1-siiE&#’y )+&’) . (9.9)

which refers to the problem of the two-dimensionalstress state of
a plate of thickness 5, and the equation of Sophie-Gezmmin-
Lagrange

V2V%= $ z (’=122)) (9.10)

which refers to the problem of the bending of a plate.

By eliminating the function 9 from the first two equations
of (9.8), there is obtained

82
(V2V2V% + 4k%2V%) + k2(V% + 2k%)

12(1-F)
f )

{[

1 (l+V) ~‘E5
1.AB & “x)+$ ‘M) -

(-=f:(Bx)+*(Ay)
(1-l))k2z + V2 z

])} J

(9.11)

Equation (9.11) is the fundamental equation of the spherical
shell with inextensible normal element and constitutes a natural
generalization
the bending of

of the equation of Sophie Cerme,in-Lagrangefor
a plate.
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Having detemined the deflection w @ the normal expansion
from the thifi of equations (9.8), the tangential displacements u
and v can be determined by the equations

(9.12)

where

e
82 V2V2W b2k V2W-—=- -2kw-

12(l+u)k 6(1+v)

[ 1 }
(9.13)

(1-v)5 I. a
—n X(B’)+$(Ay) ‘Rz12E

The theory of the spherical shell for thick shells (equa-
tions (9.3)) as well as for moderately thick shells (equations (9.8)
and (9.11)) have been presented. The fundamental functions chosen
e, w, x, and w+ are invariant relative to the direction of
the coordinate lines a,~ passing through a given point on the
sphere.

It follows that the equations given are valid for any system
of coordinates on the spherical surface. The choice of cooniinates
determines only the differential operator V2. If for the coor-
dinates a,~ the geographical coordinateswere taken, taking a
as the latitude and 13 as the longitude, then for k = l/R, A= R
and B = R sins so that

(V2=.$5 a 1 a2— . .
+ cOtGX+s#aap2 ) (9.14)

For an arbitrary load (nonsynunetricalproblem), equations (9.3)
and in the particular case (for @ = O) equations (9.8) or (9.11)
are integrated by the method of separation of variables with
respect to the variable p in trigonometric functions and with
respect to the variable a in Legendre functions.

—.- . . ... . ....—-......—- .. .... ,,,, ,, , ,,, .-.. .,,,,,,, , ,,,, ,m. , , , ,
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10. General Equations for Stability of Shells - Special Cases. -
It is assumed that the shell has a given system of stresses char-
acteriz@o,nly by thetangentlal(normal end shearing) forces .TIO,
T20,, and S0 and in equilibrium with the external.forces. It
shall,be considered that the external forces we given with an
accuracy up to one parameter, for exsmple, the intensity of any
of the components of the external load. By assigning different “
values to this pemmeter, different stress states are obtained.

In a particular case, the Internal forces TIO, T2°, and S0
may he proportional to the intensity of the external load. For a
certain value of the load parameter, the equilibrium of the shell
becomes unstable.

From the stress state TIO, T20j and so, the shell passes
to another state Tl” + Tl, T2° + T2, S0 + S, Gl, %> H) Nl>
and N2 where Tl, T2, . . . , N2 are internal forces arising
on the loss of stability. It shall be essumed that the forces Tl,

T2, . . . , N2 and the correspondingdefomnations are infinitely
small magnitudes. Because the change in the deformed state of the
shell, associated with loss in stability, is characterized by a
change in form of the middle surface, it is necessary, in order to
obtain the equations of stability, to take into account the varia-
tions of the ma~itudes referring only to the second-quadratic fo~
of the surface.

The stability equation is obtained frcm the equations (6.2)
and (6.3) given for shells of medium thickness or frcm equa-
tions (7.4) for thin shells. It is necessary in the first place
to refer all static and kinematic magnitudes entering these equa-
tions to variations of the stress and the deformed state of the
shell that arise on loss of stability and in the second place to
consider the components X, Y, and Z as those surface forces
that are obtain~ when an element of the shell AB clud~ with the
contour forces TIO+Tl, T20+T2, SO+S, . . . is carried
into the new deformed state determined by the displacements u, v,
and w.

With the passage of the shell into the deformed state, the
nomal to the middle surface will have a new direction detemnined
by the angles of rotation

\

. .. .. .--.—.—...,-..-—..———.——--—-—-
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relative to the tangents to the lines a . constant and ~ = constant
of the initial state. For the componentsX, Y, and Z of the
vector of the reduced surface force on the axes of coordinates a,
f3, and 7 of the movable trihedron of the middle surface, small
magnitudes are readily obtained with an accuracy up to se~ond order

By substituting the values of X$ Y, and Z thus obtained
in equations (6.2) and neglecting in these equations ~ ami ~,
the general equation of stability of the shells is obtained. In
the c~”e of a thin shell, X, Y, and Z must be substituted in
equations (7.4).

In either case, there is obtained with the accuracy of the
load parameter a complete system of homogeneous differential equa-
tions in the required functions that determine the deformations of
the shell associated with loss in stability. To this system are
added the boundary conditions (homogeneous).

The critical stress state TIO, T20, and S0 determined by
the paremeter of the external load entering linearly in equa-
tions (10.2) is thus determined by solving the homogeneous boundary
problem described here.

Inasmuch as of the three variables u, v, ad w the normal
displacement w has the principal effect on the change in shape of
the shell, in equations (10.2) the terms with the tangential dis-
placements u and v may be neglected. Then
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Z1=—
AB

the caee ofIn
proportional to the
zero. On the basis

(10.3)

a thin shelljthe components X and Y, being
curvatures kl and k2, may be taken equal to
of equations (7.8)

~ Ve2Ve2@ - (HVe2-LVh2)W = O
E15

- (HVe2-LVh2)W - ’53 V2V2W+1
[(
~ TIO

12(1-V2) e e E&

$(T20:$)+s(s0*)+$(s0s)l=
(10.4)

of stabilityThese equations constitute the general equations
of thin shells in the two functions @ and w and permit deter-
mining the critical stresses for very general assumptions with
regard to the given stress state.

The general theory of the stability of shells has been”pre-
sented exactly as given by eqmtfons (10.2), (6.2), and (6.3) afi
approximatelyas gfvenby equtio~ (10.3), (7.4) or (10.4).

This theory represents a considerable generalization of a num-
ber of problems on stability of elaatic systems, starting with the
simplest problem of longitudinalbending and ending with the sta-
bility of shells of arbitrary shape for arbitrarily given inltlal

stress state Tl” = T10(u,13), T20 = T20(a,p), ani S0 ~ S0(mj13)j
the critical value of which Is determined.
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Thus, for example, in equations (10.4) setting kl = k2 . 0,
from the second equation (the operator

k1+k2 ~ z ‘1-k2 Vh2 becomes zero),the‘HVe2 - LVh2 = —
2 e-— 2

equation of stability of a plate in arbitrary orthoscnal curvilin- .
ear coordinates u and f3 are obtained. For

there is obtained

Eb3
I?#w-T1O~- T20$-2S0 $&-=0 (10.5)

12(1-U2)

Equation (10.5) is the well-known equation, in rectilinear
coordinates, of the stability of a plate loaded by forces on the
boundary.

For kl = k2 = k = l/R = constant, S0 = 0, and

TIO = T20 = -pR/2 = constant, the following equation is obtained:

R252 R3ve2ve2ve2w+ ve2w + ~ ve2w = o
12(1-U2)

(10.6)

which refers to the stability of a spherical shell of radius R,
under an internal pressure p = constant, the parameter of this
equation being p.

A cylindrical shell will be considered, startin& at first
from the more accurate equations (10.2) and (8.7). If a and p

are the absolute coordinates, A = B = 1. Equations (10.2) for
kl = O and k2 = constant become
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X=o

‘=-’2[’20(’+$-s0%1
[z=&%Og- ( -$)]J.0(’2. - g)]+$~ ~ -T,” ‘~v

(,10.7)

bTIO aso o aTZIO~SO o

H -5Y+ T--= ‘ -T--+S== , and A=B=R (hence

u and 13 are relative coofiinates), equations (10.7) become the
following:

>
X=o I

,=-$y(v-?x)-soq

z
[ )!_-,20 $&i@+s49#o a2w

‘$ Tbc/

1(10.8)
On the b=is of equations (10.8), table 2 (equations (8.7))

assumes the form given by table 4. Equations (10.9) (table 4) in
the secondary operators possess also in this case a symmetrical
structure, a fact that as already noted is in agreement with the
theorem of reci rocity and therefore the critical forces will
alwaye be real.!

%he equations that are used by Timoshenko (reference 3) and
other authors (references7 and 8) are assymetric with respect to
the secondary terms and consequentlydo not correspond to the funda-
mental theorems of the theory of elasticity.
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.

These equations ~e the general equations of stability of a
circular shell, obtained in strict correspondencewith the funda-
mental hypothesis of Kirchhoff - Love and make it possible to con-
sider a number of problems of practical Interest on the determina-
tion of the critical loads of the shell.

Because the components X, Y, and Z detezndned in the gen-
eral case of the stress state by equations (10.8) are obtained
with account taken of the exact values of the angles of rota-
tion ql and q2 of the normal of the shell, equations (10.9)
are applicable also to shells of medium thickness.

In the case of a shell for which 5/R <1/3°, the tangential
contour force Y represents, according to equations (10.7), amag-
nitude that is small in comparison with the normal force Z. The
tangential contow displacement v on deformation of the shell
accompanied by the change in shape of the cross section is a mag-
nitude that is likewise small compared with the normal displace-
ment w. By assuming for a thin shell the magnitude Y to be
equal to zero and neglecting in the last
tangential displacement v,

of e~uations (10.8) the

The general stability
as to the force Y may be
stituting in this equation

equation of a
obtained from
the value of

shell for given assumptions
equation (8.10) by sub-
Z

tion (10.10). This equation has the form2

(
a4 a4 )C’2(V4+2V2+1)V40- 2C2(1-D) — - —
aa4 aa2ap2

determined by equa-

a%V2Q+(l-&) —-
aa4 1

(10.11)

21f in equations (10.11) the second and third terns of the
first component and the cauplete second component ere neglected,
the approximate equation for the stability of a thin cylindrical
shell shall be obtained.

—
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Equation (10.11) for thesb assumptions is equivalent to the
system of equations (10.9) in the three functions. The displace-
ments u, v, and w are determined in tezms of the fundamental
function @ by equation (8.9). It should be noted that
T20 = S0 . 0, that is, in the case of the stress state character-

ized only by longitudinal normal forces TIO (central compression,
for example, pure bending, eccentric action of longitudinal com-
pressive or tensile forces, and so forth), these assumptions drop
out. The equations given here are the general equations of the
stability of a cylindrical shell from which the critical stress
can be determined for very different assumptions both as regafis
the given external forces and as reganis the boundary conditions.
Thus, for example, the equations of stability can be obtained for
the following cases:

1. Central compression of a shell by a force P

T20. S0.0

P
TIO=-—

2fiR
}

2. Pure torsion of a closed shell

Tlo . T20= o

so= M

2fiR2
}

3. Shells under the action of an external normal pressure and
imovably clamped at the longitudinal edge against displacements u
and W

T1O. SO.()

T20= - qR
}

4. Shells under the simultaneous action
pressive (or tensile) force P and twlstlng

T20 = O

TIO P
‘+%

So= M

2tiR2 1

of a longitudinal com-
moment M
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In this case for the load parameter, there may
magnitude P for a given value of the magnitude M
given value of P, or the ratio of these values as
the conditions of the problem

be taken the
or M for a
a function of

5. Shells under the action of only a single bending moment
(pure bending) or of a moment and a longitudinalforce (bending
with tension or compression)

6. Shells under the action of a transverse load producing at
the sections a = c nstant longitudinal,normil, and shearing8forces TIO and S , determined by the usual elementary theory

of the bending of beams, and so forth

In all of these cases except cases 5 ati 6 the dtiferential
equations of stability have constant coefficients.

The critical stresses are determined by solving the homogen-
eous boundary problem by equation (10.11) or in the case of a more
accurate solution by the system of equations (10.9) and the homo-
geneous boundary conditions. If the shell of length 2 on each
of the curvilinear edges a= O,andu= 2/R is hinge-supported
on a diaphragm that is rigid in its plane and flexible in the trans-
verse plsne, the function @ correspondingto these boundary con-
ditions may be approximatedfor the closed shell in the form of a
double trigonometric series:

4. xx
and for shells

& 81* ~+ Cos n$ (m)n = 1, 2, 3, . ● .)

of open profile in the form of a trigonometric series
in only one variable u:

(m=l,2,3, ...)

where the function Vh(13) is determined by ordinary differential.
equations (homogeneouswith one parameter) and the boundary con-
dition (likewisehomogeneous),which must be given on the straight
edges of the shell-
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The theory given is of general character and
a number of practically important problems on the
stability,and the vibrations of shells. Thus for

permits solving
strength, the
exemple:

1. Ctnuputationof shells by the method of the theory of com-
plex variables. - In reference 12,it is shown that for shells char-
acterized by middle eurfaces of the second order with positive
Gaussian curvature (epherical,elliptical, and parabolical) the
equations of the momentless theory characterized by the mtzed dif-

ferential operator HVe2 - L~2 leads, through transformation of
the independent variables, to the Gauchy-Reiemann equations.
These investigations show that the more accurate equations (7.8)
relative to the moment theory of thin shells will be of the ellipt-
ic type for middle surfaces of the second order. These equations
for such surfaces also lead to the equations of Cauchy-Riemann.
It then follows that the computation of such shells by the moment
theory may be effected by the methods of the theory of functions
of a complex variable by developing and generalizing the known
methods of Muskhelishvili (reference 13) on the two-dimensional
problem of the theory of elasticity. In particular, it is of
interest to determine the stresses and the deformations of shells
of spherical, elliptic, and parabolic types due to the action of
a concentrated force applied at any point of the middle surface.

2. Circular cylindrical shell under the action of a concen-
trated force. - The solution of this problem may be obtainedwhe
integration of equation (8.10) or for the thin shell of equa-
tions (7.8) by the method of separation of variables. (In this case
HVe2 - LVh2 . k2 ~.) The functions required may be approximated

aa2
by trigonometric series in one of the variables a or P, as in
the method of Fai.lon-Ribierfor the two-dimensional stress state of
a rectangular plate and in the method of Morris-Levy for the case
of the bending of such a plate. The Green Function ~ be’repre-
sented by a Fourier Integral.

3. Tension in a closed circular shell having somewhere on the
surface an opening of given shape.

4. Torsion of a circular shell weakened by an opening. - Both
of these problems may be solved also with the aid of trigonometric
scries.
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5. Stability of an open circular shell in the case: (a) cen-
tral compression, (b) pure bending, (c) compressIon with bending,
and (d) bending by Riven transverse forces. - This problem is
solved by applying to the stability equations given ordinary tr@-
onometric series in the variable along the generator.

6. Stability of a closed circular shell in torsion. - The
required functions in this caee can be given in the form of trig-
onometric series in the variable p (in the direction of the trans-
verse arc).

7. Stability of a spherical shell under the action of an external
hydrostatic pressure. - The differential equation correspondingto
this problem can be integrated by the method of separation of the
variables by applying trigonometricfunctions and functions of
Legendre.
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